Phase Behavior of Living Polymer Solutions

J. Dudowicz and K.F. Freed

James Franck Institute and Department of Chemistry

University of Chicago

Chicago, IL U.S.A.

J.F. Douglas

Polymers Division

National Institute of Standards and Technology

Gaithesburg, MD U.S.A.

Calculations are provided for several essential thermodynamic properties of living polymer systems [average chain length L, average fraction of associated monomers φ , specific heat C_p , osmotic pressure Π , second virial coefficient A_2 , isothermal osmotic compressibility κ , entropy S, polymerization temperature T_p , spinodal curves, and chain length distribution p(N)] using a Flory-Huggins mean-field theory. Emphasis is placed on systems having a *finite* initiator concentration r and, therefore, exhibiting a "rounded" polymerization transition, whereas previous studies primarily focus on the limit of vanishing r where the polymerization transition has been described as a second order phase transition. We find *qualitative* changes in the properties of living polymer solutions for nonzero r:

- L becomes independent of initial monomer composition ϕ_m^0 and temperature T at low temperatures, instead of growing without bound.
- The exponent describing the dependence of L on $\varphi_{\mathbf{m}}^{0}$ changes by a factor of 2 from the $\mathbf{r} \varnothing 0^{+}$ value at higher temperatures (T ϵ T_D).
- The order parameter type variable Φ has a tail with an inflection point at T_p .
- The specific heat maximum C_p^* at T_p becomes significantly diminished, and the temperature range of the polymer transition broadens even for small r [r \approx O(10⁻³)].

Moreover, there are three characteristic temperatures for r>0 rather than one for $r\oslash 0^+$: a "crossover temperature" T_X demarking the onset of polymerization, an r-dependent polymerization temperature T_p defined by the maximum in C_p (or equivalently, the inflection point of Φ) and a "saturation temperature" T_S at which the entropy S of the living polymer solution saturates to a low temperature value as in glass-forming liquids. Many properties of living polymer solutions are representative of other self-associating polymer systems (thermally reversible gels, colloidal gels, micelles), and we compare our results to existing experimental data.